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Market Making

I The market maker’s problem is to find prices at which to
post limit buy/sell orders to profit from round-trip trades

I The benchmark models: Ho & Stoll (81), Avellanda &
Stoikov (08) Cartea & Jaimungal (12), and others

I Need to account for
I market order arrival rate

I Probability that market maker is filled at a given level

I midprice dynamics
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Market Making

I Midprice dSt = σ dWt , σ > 0,

I δ± depth at which the agent posts LOs:
I Sell LOs are posted at a price of St+δ+

t

I Buy LOs at St−δ−t

I M± Poisson arrival of other participants’ buy (+) and sell (−)
MOs which arrive at with intensities λ±,

I Nδ,± counting processes for the agent’s filled sell (+) and buy
(−) LOs,

I Conditional on an MO arrival, the LO is filled with probability
e−κ

± δ±t with κ± ≥ 0
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Market Maker’s Control Problem
The MM’s performance criteria is

Hδ(t, x ,S , q) = Et,x ,q,S

[
X δ
T + Qδ

T (ST −αQδ
T )−φ

∫ T

t
(Qδ

u)2 du

]
,

α ≥ 0, and φ ≥ 0. Value function is

H(t, x ,S , q) = sup
δ±∈A

Hδ(t, x , S , q) ,

and inventory capped: above by q > 0 and below by q < 0.

I X δ cash process

dX δ
t =

(
St+δ

+
t

)
dNδ,+

t −
(
St−δ−t

)
dNδ,−

t .

I Qδ inventory process and satisfies

Qδ
t = N

δ,−
t −N

δ,+
t .
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DPE

A DPP holds and the value function satisfies the DPE

0 = ∂tH + 1
2
σ2∂SSH︸ ︷︷ ︸

midprice diffusion

− φ q2︸︷︷︸
running inv penalty

+ λ+ sup
δ+

{
e−κ+δ+︸ ︷︷ ︸

Prob Filled sell LO

(
H(t, x + (S + δ+), q − 1, S)− H

)}
1q>q

+ λ− sup
δ−

 e−κ−δ−︸ ︷︷ ︸
Prob Filled buy LO

(
H
(
t, x − (S − δ−), q + 1, S

)
− H

) 1q<q ,

where 1 is the indicator function, and with terminal condition

H(T , x , S , q) = x + q (S −α q) .

(c) Cartea & Jaimungal, 2016 Algo Trading Nov, 2016 5 / 19



Solving HJB

I Make an ansatz for H. In particular, write

H(t, x , q, S) = x + q S + h(t, q) .

I first term is accumulated cash

I second term is the book value of the inventory
marked-to-market

I last term is the added value from following an optimal market
making strategy up to T .

φ q2 = ∂th(t, q) +λ
+sup
δ+

{
e−κ+δ+ (

δ++ h(t, q − 1)− h(t, q)
)}

1q>q

+λ−sup
δ−

{
e−κ−δ− (δ−+ h(t, q + 1)− h(t, q)

)}
1q<q ,

with terminal condition h(T , q) = −α q2.
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Optimal Controls

Then the optimal depths in feedback form are given by

δ+,∗(t, q) =
1

κ+
− h(t, q − 1) + h(t, q) , q 6= q , (1a)

δ−,∗(t, q) =
1

κ−
− h(t, q + 1) + h(t, q) , q 6= q , (1b)

and boundaries δ+,∗(t, q) = +∞ and δ−,∗(t, q) = +∞.

Substituting the optimal controls into the DPE we obtain

φ q2 = ∂th(t, q)+λ+

κ+ e−1e−κ
+(−h(t,q−1)+h(t,q) 1q>q

+λ−

κ− e
−1e−κ

−(−h(t,q+1)+h(t,q)) 1q<q .
(2)
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Symmetric fill probability

Analytical solution if κ = κ+ = κ−:

h(t, q) =
1

κ
logω(t, q) ,

and stack ω(t, q) into a vector

ω(t, q) =
[
ω(t, q), ω(t, q − 1), . . . , ω(t, q)

]′
.

Now, let A denote the (q − q + 1)-square matrix whose rows are
labeled from q to q and whose entries are given by

Ai,q =


−φκ q2 , i = q ,
λ+ e−1 , i = q − 1 ,
λ− e−1 , i = q + 1 ,

0 , otherwise,

(3)

with terminal and boundary conditions ω(T , q) = e−ακq
2
.
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Then,

ω(t) = eA(T−t)z , (4)

where z is a (q − q + 1)-dim vector where each component is

zj = e−ακ j
2
, j = q, . . . , q. Inserting the controls (1) into the DPE

equation (2) and writing h(t, q) = 1
κ logω(t, q), after some

straightforward computations, one finds that ω(t, q) satisfy the
coupled system of equations

∂tω(t) + Aω(t) = 0. (5)
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Optimal Postings

(c) Cartea & Jaimungal, 2016 Algo Trading Nov, 2016 10 / 19



Optimal postings φ = 0.001
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Figure: The optimal depths as a function of time for various inventory
levels, T = 30, λ± = 1, κ± = 100, q = −q = 3, α = 0.0001, σ = 0.01,
S0 = 100.
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Optimal postings φ = 0.02
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Figure: The optimal depths as a function of time for various inventory
levels, T = 30, λ± = 1, κ± = 100, q = −q = 3, α = 0.0001, σ = 0.01,
S0 = 100.
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Mean reversion in inventory

Given the pair of optimal strategies δ+(t, q), δ−(t, q), the expected
drift in inventories qt is given by

µ(t, q) , lim
s↓t

1

s − t
E [Qs − Qt |Qt− = q] ,

=λ−e−κ
−δ−,∗(t,q) − λ+e−κ

+δ+,∗(t,q) .

(6)

I The drift µ(t, q) depends on time.

I For the same level of inventory the speed depends on how
near of far is the strategy from T
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Figure: Long-term inventory level. Model parameters are: λ± = 1,
κ± = 100, q = −q = 10, α = 0.0001, σ = 0.01, S0 = 100, and

φ =
{

2× 10−3, 10−3, 5× 10−4
}

.
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Figure: Inventory and midprice path. Model parameters are: λ± = 1,
κ± = 100, q = −q = 10, φ = 0.02, α = 0.0001, σ = 0.01, S0 = 100.
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Profit and Loss
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Figure: P&L and Life Inventory of the optimal strategy for 10,000
simulations, λ± = 1, κ± = 100, q = −q = 10, α = 0.0001, σ = 0.01,
and S0 = 100.
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Market Making with No Terminal Penalty
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Solving HJB with α = 0

Assume no penalties for liquidating inventories at time T . Thus
the ansatz is

H(t, x , q, S) = x + q S + g(t) . (7)

Thus,

0 = gt(t) + λ+ sup
δ+

{
e−κ

+δ+
δ+
}

+ λ− sup
δ−

{
e−κ

−δ− δ−
}
,

and the optimal postings are:

δ∗,+ =
1

κ+

and

δ∗,− =
1

κ−
.
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Solving HJB with α = 0

Alternatively note that

I A risk-neutral MM, who does not penalise inventories, seeks
to maximise the probability of being filled at every instant in
time.

I Thus, the MM chooses δ± to maximise the expected depth
conditional on a market order hitting or lifting the appropriate
side of the book: maximises δ±e−κ

±δ± . The FOC

e−κ
±δ± − κ±δ±e−κ±δ± = 0 . (8)

Thus, we see that the optimal half spreads are as above.
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