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Classification
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Classification

I The classification problem is as follows: given data

(X1, Y1) , . . . , (Xn, Yn)

where
Xi = (Xi1, . . . ,Xid) ∈ X ⊂ Rd

are the features, X is called feature space, and

Yi ∈ Y = {1, . . . ,K} (the discrete set of classes)

are the observed classifications, determine a classification
rule

h : X → Y

which minimizes some performance criteria.
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Classification

I Generative classifiers model the feature conditional on the
class

P(X | Y = y)

I Discriminative classifiers model the class conditional on the
feature

P(Y = y | X)
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Bayes Classifier
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Bayes Classifier

I The True Error Rate of a classifier h is defined as

E(h) = P ({h(X) 6= Y })

I The training error rate of a classifier h is defined as

Ê(h) =
1

n

n∑
i=1

1 {h(Xi ) 6= Yi}
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Bayes Classifier
I We aim to set a rule based on the probability that Y = y

given that X = x . To this end, note that

P(Y = y | X = x) =
fX|Y=y (x) P(Y = y)

K∑
k=1

fX|Y=k(x) P(Y = k)

where fX|Y=y (x) denotes the conditional density of X,
conditional on Y = y .

I Bayes Classification Rule is to set

h(x) = arg max
y

P(Y = y | X = x)

= arg max
y

fX|Y=y (x)P(Y = y)

i.e., it seeks assign a class which maximizes the probability
that the class is observed at that point in feature space
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Bayes Classifier

I The class probabilities πk = P(Y = k) can be estimated
empirically

π̂k =
1

n

n∑
i=1

1{Yi = k} =
nk
n

i.e., the ratio of the number of observations of class k to all
observations
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Bayes Classifier

I The conditional feature probabilities fX|Y=k(x) requires
some modeling (NB: one could use kernel densities estimator)

I The simplest is to assume that the features are multi-variate
normal conditional on Y , i.e.,

X|Y=k ∼ N (µk ; Σk)
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Bayes Classifier

I In this case, the Bayes Classification Rule becomes

h(x) = arg max
k

{
log πk − 1

2 log det Σk

− 1
2 (x − µk)′Σ−1k (x − µk)︸ ︷︷ ︸

Mahalanobis distance

}

I Note: the classification boundaries are quadratic functions of
the feature space.. and it is called a Quadratic Discriminant
Analysis (QDA)
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Bayes Classifier

I To complete the classification, we use the sample conditional
means

µ̂k =
1

nk

n∑
i=1

1Yi=k Xi

and sample covariance matrices

Σ̂k =
1

nk

n∑
i=1

1Yi=k (Xi − µ̂k)(Xi − µ̂k)′

in the classification rule

(c) Jaimungal, 2018 Algo Trading Jan, 2018 11 / 23



Bayes Classifier
Simulated Classifications...
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Bayes Classifier
Simulated Classifications...
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Bayes Classifier

3 classes Price movement : Order Imbalance & Order flow (1s)
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Bayes Classifier

5 classes Price movement : Order Imbalance & Order flow (1s)
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Bayes Classifier

I If we use an (independent) kernel density estimator for the
conditional feature probabilities fX|Y=k(x) then we get the
Näıve Bayes Classifier

I That is, we estimate

f̂X|Y=k(x) = f̂k,1(x1)× f̂k,2(x1)× · · · × f̂k,d(xd) ,

with marginal densities

f̂k,i (x) =
1

nk

N∑
i=1

1Yi=k φxi (x i ; ε) ,

and φxi (x i ; ε) is a kernel density, e.g., gaussian with mean xi
and variance ε2.
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Multi-Class Logistic Regression
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Multi-Class Logistic Regression

I Multi-Class Logistic Regression is sometimes also called a
maximum entropy classifier

I It is a discriminative model and assumes that

P (Y = c | X = x ) := µc(x) =
ew

′
c x

C∑
c=1

ew
′
c x

one often sets wC = 0 for identifiability

I This is a “generalized” logistic model

P(Y = 1 | X = x) =
(

1 + e−w
′
x

)−1
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Multi-Class Logistic Regression

I We use the the maximum a posteriori classifier

h(x) = arg max
c

P(Y = c | X = x)

= arg max
c

w
′
c x

which leads to linear decision boundaries

I How to estimate the model parameters
w1,w2, . . . ,wC−1?... maximum likelihood
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Multi-Class Logistic Regression
I The likelihood function L(Θ |X1) is the probability of the

observed outcomes X with model parameters Θ, i.e,

L(Θ |X) = P(X |Θ)

I In the case of multi-class logistic model, we have

L(W | ((Y1,X1), . . . , (YN ,XN)) =
N∏

n=1

P(Y = Yn |X = Xn)

and the log-likelihood function `(W) = L(Θ |X) is

`(W) =
N∑

n=1

(
ynWxn − log

C∑
c=1

ew
′
c xn

)

where

W = (w1 w2 . . . wC )′ , and [yn]c = 1Yn=c
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Multi-Class Logistic Regression

I To maximize `(W), we must use numerical methods

I Wish to find Ŵ such that

S(Ŵ) = 0 , where the score function Sci (W) := ∂wci `(W)

I Newton-Raphson method:
I Let Ŵ(k) be the current estimate

I Then, set

Ŵ(k+1) = Ŵ(k) + I(Ŵ(k))−1 S(Ŵ(k))

where I(W) is the Fisher-Information matrix

[I(W)]c,i,c′,i ′ = − ∂2

∂wciwc′ i′

`(W)

I Repeat until converged
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Multi-Class Logistic Regression

I For multi-class logistic we have
I The score function

S(W) =
N∑

n=1

(yn − µn).xn

I The Fisher-Information matrix

I(W) =
N∑

n=1

(diag(µn)− µn µ
′
n)⊗ (xn x

′
n)
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Multi-Class Logistic Regression

3 classes Price movement : Order Imbalance & Order flow
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