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PCA

» Principal component analysis (PCA) aims to find the
independent modes of fluctuations of data

» For example in 2-D

» PCAs are obtained by looking at the eigenvectors associated
with the covariance matrix of the data

» eigenvalues correspond to the variance in the direction of
that mode of fluctuation
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PCA

» Let X denote the covariance matrix of X

» Since X is positive-definite, there exists an orthogonal
matrix U and a diagonal matrix D such that

x=UDUT

» Moreover, U corresponds to the matrix of eigenvectors of X
(stacked columnwise) and the diagonal elements of D the
corresponding eigenvalues.

2 U =Dy Uy

and UTjU.k = djk
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PCA

» Hence, writing Y = UT X,

CIYi, Y] =C|> UuXi, > UyX
k !

= UkU;C[Xx, X/]

k!

= UU;zK

kI
= (UTZV);
= (UTUDU™U); = D;

» The elements of the random variables Y are all independent,
and have variance Dj;

» They are the principal components
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FPCA
» Functional Principal Component Analysis (FPCA) is the
functional version of PCA
» The raw data {xj1,...,Xin, }i=1,.. N are viewed as noisy
observations of a function at discrete points in “time”

{tit, ... tin biz1, N
» Take observation /, and regress the observed values

{xij}j=1,...,n; onto a basis ¢(t) = {¢1(t),...,dk(t)} i.e.
o = argamin ZI (x,-j — Za;,k qbk(tU))

this can be done using least-squares.
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FPCA

Many different basis choice... domain specific knowledge

» Legendre polynomials P,(t) basis, these are solutions to
Legendre's ODE

% ((1 - tz)%P,,(t)) +n(n+1)Ps(t) =0

and can be written as

Po(t) = = & (#-1)

27 nl dtn

They form an orthogonal basis w.r.t. the L? inner product

1
2
/1 Pm(t) Pa(t) dt = m(smn.
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FPCA

This provides a “time-series” of coefficients ;..
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FPCA typically assumes that these are independent.. but there are

modifications that account for functional time-series.
We will stick to the independent case.
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FPCA

» Define the covariance function
K(s,t) = cov (x(s), x(t))

this is the analog of the covariance matrix X of a
multi-variate sequence of observations

» Recall for PCA

M
Y=U'DU=) qU,;U. with ULU;=0;
j=1
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fPCA

» Mercer’s lemma states that if K(s, t) is continuous on D?,
then there exists an orthonormal sequence of continuous
functions {¢;(t),i = 1,...} (eignefunctions) such that

(K 4i)(t) = rii(t),

where the kernel operator C acts on square-integrable
functions f as follows

(K £)(t) = /D K(s,t)f(s)ds.

Moreover, the covariance function
K(s,t) = > rjui(s)uyle),  with /D Gi(e) wy(t) dt = oy
j=1

and 327, Kj = [, K(s,s)ds < +o0.
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fPCA

» The Karhunen-Loéve expansion states that under the

assumptions of Mercer's lemma, we have
o
x(t) = p(t) + D VAR & Ui(t),
j=1

where,

1
G- /D x() t5(s) ds

is a random variable with
E[¢] =0 and E[¢i &) = 6j, Vi,j €N,

and the series converges uniformly on D w.r.t the L2 norm.
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fPCA

» The eigenvalues k; can be interpreted as the size of the
variation of x(t) in the direction of v;(t)

» We typically truncate the series to obtain a dimensionally
reduced approximation of x

M
K =p+ > /e vi(t)
j=1

» But how to estimate the eigenfunctions and eigenvalues
from data?
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fPCA

> Let the sample mean function be denoted 7, i.e.,
n
() = 1> xi(t)
i=1
» The empirical approximation of K(s, t) is

N
K(s.t) = 5 D (xi(s) = u(s)) (xi(t) — u(t)) -

i=1

» Mercer's lemma then implies there exists an orthonormal basis
of eigenfunctions v; with eigenvalues %; such that

R(s.t) =3 &; di(s) d(t)
j=1
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fPCA

» Expand the (centered) observations and eigenfunctions onto
the basis functions

K K
xi(t) =Y cudj(t),  and () =D bpgi(t)
k=1 k=1

» Then one can show that
_1
b' =W 2Uj

where u; solves the eigenproblem

1 1
(,%IW2 CTCW2>UJ'—/€J'UJ'

and
Wi =< ¢r, 1 > .
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fPCA

Figure: INTL (2014) traded volume using 5 minute buckets.

FPCA

log(14Volume)
o o
v o (&)

N

=
2]

o

2 4
Hour

FPCA 2: 15.3%

log(1+4Volume)
o B B

©

~

o

(c) Jaimungal, 2018

Hour

Algo Trading

log(1+Volume)

log(1+4Volume)

FPCA 1: 71.7%

12

11 v

10

9

8

7O 2 4 6
Hour

FPCA 3: 7.5%

11

10

9

8

o 2 4 6
Hour

Jan, 2018

14 / 14



