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Expectation Maximization
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EM Algorithm

I Expectation Maximization allows one to obtain maximum
likelihood estimates(MLE) for models with latent variables

I It consists of two main steps:
I E-step (expecatation)

I estimate the latent variables given the observations

I M-step (maximization)
I maximize the likelihood given the estimated latent variables
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EM Algorithm

I X = {Xt : t = 1, . . . ,N} are the r.v. corresponding to the
observed data

I x = {xt : t = 1, . . . ,N} are the observed data

I Θ is the set of model parameters which you aim to estimate

I Z = {Zt : t = 1, . . . ,N} are the r.v. corresponding to the
latent variables

I z = {zt : t = 1, . . . ,N} are the unobserved latent variables

I We aim to maximize the log-likelihood

`(Θ) = logP(X = x |Θ)

of the observed data
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EM Algorithm
I Since z are unobserved, the likelihood consists of summing

over all possible values

P(X = x |Θ) =
∑
z

P(X = x , Z = z |Θ)

I Instead, EM seeks to construct a sequence of improvements

`(Θ) = log
∑
z

P(X = x , Z = z |Θ)

= log
∑
z

Q(Z = z | X = x)
P(X = x , Z = z |Θ)

Q(Z = z | X = x)

= logEQ[ ΨQ(X = x , Z ; Θ) ]

here, Q is any probability distribution over the latent
variables, and the r.v.

ΨQ(X = x , Z = ·; Θ) =
P(X = x , Z = · |Θ)

Q(Z = · | X = x)
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EM Algorithm

I Jensen’s inequality gives

`(Θ) ≥ EQ[ log ΨQ(X = x , Z ; Θ) ]

I The lower bound is saturated if ΨQ(X = x , Z ; Θ) = const.,
i.e., when

QΘ(·) =
P(X = x , Z = · |Θ)∑
z
P(X = x , Z = z |Θ)

= P(Z = · |X = x ; Θ)

I Hence,
`(Θ) = EQΘ [ log ΨQΘ

(X = x ; Θ) ]
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EM Algorithm

I Next, suppose we have a current estimate Θk for the MLE,
then consider the new function

¯̀(Θ) =EQΘk [ log ΨQΘk
(X = x ; Θ) ]

=EQΘk

[
log

P(X = x , Z |Θ)

QΘk
(Z | X = x)

]
I Consider a new estimate Θk+1 given by

Θk+1 = arg max
Θ

¯̀(Θ)

I Would like to show that `(Θk+1) ≥ `(Θk), i.e., that this
estimate improves the log-likelihood
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EM Algorithm

I To this end, we have for any Q

`(Θk+1) ≥ EQ[ log ΨQ(X = x ; Θk+1) ]

so certainly it is true for Q = Qk , and hence

`(Θk+1) ≥EQk [ log ΨQk
(X = x ; Θk+1) ]

= ¯̀(Θk+1)

≥ ¯̀(Θk) ∵ Θk+1 maximizes ¯̀

= `(Θk)
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