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Expectation Maximization
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EM Algorithm

» Expectation Maximization allows one to obtain maximum
likelihood estimates(MLE) for models with latent variables

> It consists of two main steps:
» E-step (expecatation)
> estimate the latent variables given the observations

» M-step (maximization)

» maximize the likelihood given the estimated latent variables
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EM Algorithm

v

X ={X¢:t=1,...,N} are the r.v. corresponding to the
observed data

» x ={x;:t=1,..., N} are the observed data

v

© is the set of model parameters which you aim to estimate

v

Z={Z :t=1,...,N} are the r.v. corresponding to the
latent variables

» z={z:t=1,..., N} are the unobserved latent variables

v

We aim to maximize the log-likelihood
(©) =logP(X =x|0)

of the observed data

(c) Jaimungal, 2018 Algo Trading Jan, 2018

4/8



EM Algorithm

» Since z are unobserved, the likelihood consists of summing
over all possible values

P(X =x|0©) = Z]P’ =x,Z2=12|0)
» Instead, EM seeks to construct a sequence of improvements
= IogZP(X:x, Z=2z|0)
P4

P(X=x,Z=2z|0)
QZ=z|X=x)

:IogZQ(Z:z|X:x)

= log EQ[ Wo(X = x, Z;0) ]

here, Q is any probability distribution over the latent

variables, and the r.v.

PX=x,Z=-|0)
AZ="TX=x)
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EM Algorithm

» Jensen’s inequality gives
(©) > E¥[log Wo(X = x, Z;0)]

» The lower bound is saturated if Vo(X = x, Z;©) = const.,

i.e., when
P(X =x,Z="|0)
Q)= s~ pix o5 7=zl ~PZ="1X=x©)
» Hence,
¢(6) = E%[ log Vg, (X = x©)
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EM Algorithm

» Next, suppose we have a current estimate © for the MLE,
then consider the new function

7(©) =E%:[ log Wg,, (X = x;©) ]
P(X =x, Z|O)
Qo,(Z X = x)

» Consider a new estimate ©y.1 given by

— EQex log

Ok+1 = argmax ((©)
©

» Would like to show that £(©41) > ¢(©y), i.e., that this
estimate improves the log-likelihood
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EM Algorithm

» To this end, we have for any Q
((Ok+1) > E% log Wp(X = x; ©11) |
so certainly it is true for Q = Qy, and hence

0Ok 11) >EU[log Wg, (X = x; Ok 1) ]

= _(9k+1)

> 0(Ok) " ©p41 maximizes /
{(©k)
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