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PCA

I Principal component analysis (PCA) aims to find the
independent modes of fluctuations of data

I For example in 2-D
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I PCAs are obtained by looking at the eigenvectors associated
with the covariance matrix of the data

I eigenvalues correspond to the variance in the direction of
that mode of fluctuation
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PCA

I Let Σ denote the covariance matrix of X

I Since Σ is positive-definite, there exists an orthogonal
matrix U and a diagonal matrix D such that

Σ = U DUᵀ

I Moreover, U corresponds to the matrix of eigenvectors of Σ
(stacked columnwise) and the diagonal elements of D the
corresponding eigenvalues.

ΣU ·k = Dkk U ·k

and Uᵀ
·jU ·k = δjk
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PCA

I Hence, writing Y = U
ᵀ X,

C[Yi , Yj ] = C

[∑
k

Uki Xk ,
∑
l

U lj Xl

]
=
∑
k,l

UkiU ljC [Xk , Xl ]

=
∑
k,l

UkiU ljΣkl

= (UᵀΣU)ij

= (Uᵀ
UDUᵀ

U)ij = Dij

I The elements of the random variables Y are all independent,
and have variance Dij

I They are the principal components
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FPCA
I Functional Principal Component Analysis (FPCA) is the

functional version of PCA

I The raw data {xi1, . . . , xini}i=1,...,N are viewed as noisy
observations of a function at discrete points in “time”
{ti1, . . . , tini}i=1,...,N

I Take observation i , and regress the observed values
{xij}j=1,...,ni onto a basis φ(t) = {φ1(t), . . . , φK (t)}, i.e.

αi = argmin
α

ni∑
j=1

(
xij −

K∑
k=1

αi,k φk(tij)

)2

this can be done using least-squares.
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FPCA
Many different basis choice... domain specific knowledge

I Legendre polynomials Pn(t) basis, these are solutions to
Legendre’s ODE

d

dt

(
(1− t2)

d

dt
Pn(t)

)
+ n(n + 1)Pn(t) = 0

and can be written as

Pn(t) =
1

2n n!

dn

dtn

(
(t2 − 1)n

)
They form an orthogonal basis w.r.t. the L2 inner product∫ 1

−1

Pm(t)Pn(t) dt =
2

2 n + 1
δmn .
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FPCA

This provides a “time-series” of coefficients αi ..
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FPCA typically assumes that these are independent.. but there are
modifications that account for functional time-series.
We will stick to the independent case.
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FPCA

I Define the covariance function

K (s, t) = cov (x(s) , x(t))

this is the analog of the covariance matrix Σ of a
multi-variate sequence of observations

I Recall for PCA

Σ = U
ᵀ DU =

M∑
j=1

dj U .j U
ᵀ
.j with U

ᵀ
.i U .j = δij

(c) Jaimungal, 2018 Algo Trading Jan, 2018 8 / 14



fPCA

I Mercer’s lemma states that if K (s, t) is continuous on D2,
then there exists an orthonormal sequence of continuous
functions {ψi (t), i = 1, . . . } (eignefunctions) such that

(Kψi )(t) = κi ψi (t),

where the kernel operator K acts on square-integrable
functions f as follows

(K f )(t) =

∫
D
K (s, t) f (s) ds .

Moreover, the covariance function

K (s, t) =
∞∑
j=1

κj ψj(s)ψj(t) , with

∫
D
ψi (t)ψj(t) dt = δij

and
∑∞

j=1 κj =
∫
D K (s, s) ds < +∞.
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fPCA

I The Karhunen-Loéve expansion states that under the
assumptions of Mercer’s lemma, we have

x(t) = µ(t) +
∞∑
j=1

√
κj ξj ψj(t) ,

where,

ξj =
1
√
κj

∫
D
x(s)ψj(s) ds

is a random variable with

E[ξi ] = 0 and E[ξi ξj ] = δij , ∀i , j ∈ N ,

and the series converges uniformly on D w.r.t the L2 norm.
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fPCA

I The eigenvalues κi can be interpreted as the size of the
variation of x(t) in the direction of ψi (t)

I We typically truncate the series to obtain a dimensionally
reduced approximation of x

x̂ = µ+
M∑
j=1

√
κj ξk ψk(t)

I But how to estimate the eigenfunctions and eigenvalues
from data?

(c) Jaimungal, 2018 Algo Trading Jan, 2018 11 / 14



fPCA

I Let the sample mean function be denoted µ, i.e.,

µ(t) = 1
n

n∑
i=1

xi (t)

I The empirical approximation of K (s, t) is

K̂ (s, t) = 1
N

N∑
i=1

(xi (s)− µ(s)) (xi (t)− µ(t)) .

I Mercer’s lemma then implies there exists an orthonormal basis
of eigenfunctions ψ̂j with eigenvalues κ̂j such that

K̂ (s, t) =
∞∑
j=1

κ̂j ψ̂j(s) ψ̂j(t)
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fPCA

I Expand the (centered) observations and eigenfunctions onto
the basis functions

xi (t) =
K∑

k=1

cikφj(t), and ψ̂j(t) =
K∑

k=1

bjkφj(t)

I Then one can show that

bj = W
− 1

2u j

where u j solves the eigenproblem

(
1
NW

1
2 C

ᵀ
C W

1
2

)
u j = κj u j

and
Wkl =< φk , φl > .
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fPCA

Figure: INTL (2014) traded volume using 5 minute buckets.
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FPCA 1 : 71.7%
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FPCA 2 : 15.3%
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FPCA 3 : 7.5%

(c) Jaimungal, 2018 Algo Trading Jan, 2018 14 / 14


